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Abstract. We prove large-deviation results for empirical measures, with respect to an arbitrary
g-measure on a subshift of finite type, by using an ergodic theorem for relative entropy we establish.
Extending some results of Cajar on Billingsley dimensions tog-measures, we relate the relative
entropy to the dimensions of saturated sets. This allows a dimensional interpretation of the large-
deviation results and the study of the set of non-generic points which are proved to be of full
dimension.

1. Introduction and set-up

The aim of this paper is to investigate some ergodic or statistical properties of the so-called
g-measures. Loosely speaking,g-measures form a class of invariant measures lying between
Gibbs measures, whose ergodic properties are well understood, and general equilibrium states,
whose ergodic properties are substantially more difficult to handle. The notion of ag-measure
has a long history in probability theory under various names (a chain with complete connections
[1] and a uniform martingale). We take a non-standard definition ofg-measures which is
equivalent to the more usual one in the case when the functiong is continuous.(�, σ ) denotes
the full shift on, say, two symbols. (We give more information on this at the end of this section.)
The functiong will be called ag-function if g is a continuous function from� to (0, 1) such
that ∑

ω′:σω′=ω
g(ω′) = 1. (1)

Write G for the set of all such functions. The measureµ is ag-measure if it is shift-invariant
and satisfies

lim
n→∞

µ[πn+1 · ω]

µ[πn · σω]
= g(ω) for almost allω w.r.t.µ. (2)

For everyg ∈ G, there is always at least oneg-measure by a standard ergodic theory argument.
A g-measure is always non-atomic and of full support (for proofs of these facts and other
background information, the reader is referred to [11]). In the case whereg is Hölder
continuous, theg-measure is known to be unique (this corresponds to Bowen Gibbs measures
[2]). One of the weakest conditions known to ensure uniqueness ofg-measures was provided
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676 J-R Chazottes and E Olivier

by Berbee [1]. For a long time it was an open question whether or not for every continuousg-
function there is a uniqueg-measure, but this was settled recently by Bramson and Kalikow [3]
who constructed an example of a continuousg-function with two distinctg-measures (see also
[15]). In section 2, we define topological pressure and information to characterizeg-measures
as equilibrium states.

In this paper, we follow two directions, namely large deviations and Billingsley
dimensions. We generalize some previous results, relate them and give some consequences.
Let us be more precise. We now describe the organization of the article.

Large deviations appear naturally in statistical mechanics (see [9]) in the equivalence of
ensembles. In the Markovian or Gibbsian context, one can analyse large deviations precisely.
A key quantity in this study is relative entropy. We generalize its definition when the reference
measure is an arbitraryg-measure and prove a pointwise ergodic theorem expressed in terms of
information on the measures involved (section 3). This enables us to establish the lower bound
of large deviations for empirical measures, which is more delicate than the upper one that we
derive using a standard argument, once the existence of the cumulant generating function is
proved (section 4). In [10], large-deviation estimations are obtained in a more general setting,
but uniqueness of equilibrium states is assumed there in order to use derivatives of the pressure.
Moreover, our approach is extensively based on the properties of relative entropy.

Billingsley dimensions appeared naturally as an extension of the Hausdorff dimension
in the context of sets of real numbers characterized by digit properties of theirs-adic
representations (see [5] and references therein). These sets are typical examples of saturated
sets. In the context of dynamical systems, typical saturated sets are sets of generic points of
invariant measures. Loosely speaking, one defines the Billingsley dimension by replacing the
diameter of cylinders by some non-atomic measure in the Carathéodory construction. Taking
any g-measure as such a reference measure, we derive some formula giving access to the
dimension of the saturated sets. It generalizes the formula given in [5] for Markov measures
to arbitraryg-measures (section 5).

In section 6, we give different consequences of the preceding sections. First of all, we
establish the relationship between Billingsley dimensions and the relative entropy through
a simple formula. In the next subsection, we perform the multifractal analysis of Hölder
continuous functions by using the large-deviation results of section 4 and the formula we have
just talked about. We refer to [14] for a general and unified presentation of the multifractal
formalism. The last subsection is dedicated to the study of non-generic points, that is, using
the language of multifractal analysis, of the points for which level sets are not defined. We
show that such points are ‘observable’ in the sense that they have full Hausdorff dimension,
though they form a null-measure set. We point out that our method for proving this makes
use of the formula derived in section 5, computing the Billingsley dimension of saturated
sets. We mention the related work in [17] where, roughly speaking, it is proved that the set
for which lower and upper pointwise dimensions, of any Gibbs measure, are different has a
strictly positive Hausdorff dimension and is dense.

We end this section by collecting together basic notations, definitions and some important
basic facts.

Let � denote the full shift space{0, . . . , k − 1}N which is endowed with the product
topology andMσ the set of Borel probability measures on� which are invariant under the
shift mapσ : �→ �, (σω)n = ωn+1. For anyω ∈ � andn > 1, [πn · ω] is thenth cylinder
aboutω: [πn · ω] := {ω′ : πn · ω′ = πn · ω} and�n := {0, . . . , k − 1}n = πn(�) is the
set of words of lengthn. Cylinder sets generate the Borel sigma-algebraB. We use also the
following notation:M for the set of probability measures on�, endowed with the weak∗

topology,C(�) for the set of real continuous functions on� (we use the supremum norm
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‖ · ‖∞). The results of this paper remain valid with straightforward modifications in the case
of any topologically mixing subshift of finite type, that is a subshift such that admissible words
are given by a primitive matrixA (i.e. ∃n0 > 0, s.t.∀(i, j) ∈ {0, 1, . . . , k−1}2, (An)i,j > 0
for anyn > n0).

Let us point out a key property we shall use, namely the specification property, which
ensures that for any admissible wordsu andv there exists a wordw of length at mostn0, such
that the concatenated worduwv is admissible. It is shown in [7] that such a property implies
that ergodic measures are dense inMσ in the weak∗ topology. This fact will be useful when
we deal with large deviations, as well as when we study non-generic points.

2. Thermodynamic formalism of g-measures

The two main ingredients we need are topological pressure and information.
For alla ∈ �n, we denote bya the uniquen-periodic point of [a]. Now define the pressure

of any continuous potential (see [16] for instance):

Definition 2.1. Letφ ∈ C(�). Then

P(φ) = lim
n→+∞

1

n
log

∑
a∈�n

exp Snφ(a) (3)

whereSnφ denotes the Birkhoff sum
∑n−1

k=0 φ ◦ σ k throughout this paper.

Remark 2.2. Pressure can be defined as a capacity using a Carathéodory construction. We
refer to [14] for details.

A useful characterization ofg-measures due to Ledrappier uses information on shift-
invariant measures. Forν ∈Mσ define the following Borel function from� to [−∞,+∞]:

Iµ :=
∑
a∈�1

−χ[a] logE(χ[a] |σ−1
B) (4)

whereE denotes the conditional expectation with respect toσ−1B in L1(µ). The information
Iµ is µ-integrable and such that

∫
Iµ dµ = h(µ). Defineφg := logg for anyg-functiong.

We have the following:

Theorem 2.3 ([11]).Letg ∈ G. A shift-invariant measureµ on� is ag-measure if and only
if φg = −Iµ, µ-a.e.

A g-measure can be defined equivalently as the equilibrium state of the potentialφg,
that is as the supremum of

∫
φg dν + h(ν) over all shift-invariant measures, which is the

topological pressure ofφg, P(φg) (h(ν) is the entropy ofν). This is the variational principle.
By theorem 2.3, it follows thatP(φg) = 0. Non-uniqueness means that the set of equilibrium
states ofφg, denoted byIφg , is not a singleton (which can be interpreted as a phase transition
when one thinks about� as a one-dimensional lattice).

Remark 2.4. Condition (1), given in section 1, reads
∑

ω′:σω′=ω eφg(ω
′) = 1 that isLφg1 = 1,

whereLφg is the transfer operator associated withφg. Moreover, we have thatµ is ag-measure
if, and only if,L∗φgµ = µ, whereL∗φg is the dual ofLφg in the weak∗ sense. This is the third
possible definition ofg-measures equivalent to the two others. (See again [11].)

Theorem 2.3 leads to the natural definition of canonical information:

Definition 2.5 (Canonical information). Letµ be ag-measure associated withg ∈ G. The
functionI cµ := −φg is called the canonical information ofµ.
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As ag-measure is necessarily supported by� (see [13]), one can consider for any integer
n the real-valued functiongµn defined forω ∈ � by gµn (ω) := µ[πn+1 ·ω]/µ[πn ·σω]. Clearly
this is ag-function depending only on the first(n + 1) symbols. The uniqueg-measureµn of
g
µ
n is by definition then-step Markov approximation ofµ and one hasI cµn = − loggµn . One

has the following lemma:

Lemma 2.6 (Markov approximation and information, [13]). If µ is ag-measure whosen-
step Markov approximation isµn, thenI cµn converges uniformly toI cµ.

This lemma will be used several times in the following. Before proceeding further, let us
make the following simple remark:

Remark 2.7. Any probability measure of full support can be obtained as a weak∗ limit of its
Markov approximations. This is implied by the definition of weak∗ topology.

SinceI cµn uniformly converges toI cµ, there exists a sequence(εn)n of non-negative real
numbers decreasing to 0 and such that for allω ∈ � andn > 0,

e−nεn 6 µ[πn · ω]

exp
(
SnI cµ(ω)

) 6 enεn . (5)

To close this section, we mention that ifφ : � → R is a Hölder continuous† function, then
there is a unique measure,µφ , for which there are constants 0< c 6 c such that, for any
n > 1 and anyω ∈ �, we have

c 6 µφ [πn · ω]

exp
(−nP (φ) + Snφ(ω)

) 6 c.
The measureµφ is a Gibbs measure. In fact (see [16]), on can always assumeP(φ) = 0
because any Ḧolder continuous potential can be normalized. Compare with (5).

3. Relative entropy

Letφ ∈ C(�)andη be a shift-invariant measure on�. Defineh(η|Iφ) := P(φ)−(h(η)+η(φ))
(whereIφ denotes the set of equilibrium states associated withφ, which is never empty by
expansivity of the shift map, see [16]). By the variational principle,h(·|Iφ) is a positive map
onMσ (�) andh(η|Iφ) = 0 if and only ifη ∈ Iφ . Moreover, entropy being an affine and upper
semi-continuous map fromMσ toR+, it is clear thath(·|Iφ) is an affine lower semi-continuous
map fromMσ toR+.

Letµ andη be shift-invariant measures on�. If µ is supported by� then,

Hn(η|µ) :=
∫

log
η[πn · ω]

µ[πn · ω]
dη(ω) =

∑
a∈�n

η[a] log
η[a]

µ[a]
. (6)

Definition 3.1 (Relative entropy). The relative entropy ofη with respect toµ is the positive
quantity

h(η|µ) := lim sup
n→+∞

1

n
Hn(η|µ). (7)

Clearly,h(µ|µ) = 0 for anyµ, but in generalh(η|µ) = 0 does not implyη = µ.
DefineJσ as the sigma-algebra of shift-invariant Borel sets of�.

† What follows holds whenφ has summable variations.
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Theorem 3.2 (Pointwise convergence to relative entropy).Let µ be ag-measure andη a
shift-invariant measure. Then the following statements hold:

(i) lim
n→+∞

1

n
log

η[πn · ω]

µ[πn · ω]
= E(I cµ − Iη|Jσ )(ω) η-a.e. inL1(η)

(ii) h(η|µ) =
∫
(I cµ − Iη) dη = h(η|Iφg ).

Proof. (i) Let µn be then-step Markov approximation of theg-measureµ. It follows from
the definition ofI cµn that logµ[πn · ω] =∑n−1

k=0 I
c
µn−k+1

(σ kω). Therefore,∣∣∣∣1nSnI cµ(ω) +
1

n
logµ[πn · ω]

∣∣∣∣ 6 1

n

n−1∑
k=0

‖I cµ − I cµk‖∞

and sinceI cµk goes toI cµ in the uniform norm onC(�) (lemma 2.6), then the Cesaro lemma
implies

lim
n→+∞

(
1

n
SnI

c
µ(ω) +

1

n
logµ[πn · ω]

)
= 0. (8)

For any shift-invariant measureη, the Birkhoff ergodic theorem ensures that

lim
n→+∞

1

n
SnI

c
µ(ω) = E(I cµ|Jσ )(ω) η a.e. inL1(η). (9)

Now, by the Shannon–McMillan–Breiman theorem:

lim
n→+∞

1

n
logη[πn · ω] = E(Iη|Jσ )(ω) η a.e. inL1(η). (10)

Combining (8)–(10), one obtains assertion (i).
(ii) Definition of the relative entropy together with the pointwise convergence given in (ii)

implies

h(η|µ) = lim sup
n→+∞

1

n

∫
log

η[πn · ω]

µ[πn · ω]
dη(ω)

=
∫
E(I cµ − Iη|Jσ ) dη =

∫
(I cµ − Iη) dη.

SinceI cµ = −φg,
∫
(I cµ − Iη) dη = −η(φg)− h(η) = h(η|Iφg ). �

We end this section with a remark relating relative entropy to some capacities.

Remark 3.3. Using a result in [14], appendix II, we can write

h(η|Iφ) = P(φ)− PG(η)(φ)
whereη is any ergodic measure,G(η) is the set ofη-generic points (see section 6.1 for the
precise definition) andφ is any continuous function.

4. Large deviations for empirical measures

We establish large-deviation results for the sequences
(
Tn : �→M)

n
and

(
T̃n : �→M)

n

of empirical and cyclic empirical measures on the space(�,µ), whenµ is ag-measure. By
definition,T̃n(ω) := Tn(πn · ω), for anyn > 1 and anyω ∈ � andTn(ω) := (1/n)∑n−1

k=0 δσkω.
(Recall thatπn · ω is then-periodic point made up with then first coordinates ofω.) Let us
remark that in the case of a topological mixing subshift of finite type, cyclic empirical measures
are well defined up to a subsequence using the specification property (see the introduction for
the definition).
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4.1. Upper bound

The logarithmic moment generating function9, associated with a sequence
(
Yn : �→M)

n

of random variables on the space(�,µ), is the convex map fromC(�) toR∪ {+∞}, defined,
when it does exist, by setting for allψ ∈ C(�):

9(ψ) := lim
n→+∞

1

n
log

∫
exp(〈nYn(ω) |ψ〉) dµ(ω).

In the general case, it is proved in [8] that if9 exists and is not identically equal to +∞, then
for every compact subsetK ofM, one has the following upper bound:

lim sup
n→∞

1

n
logµ{ω : Yn(ω) ∈ K} 6 − inf

η∈K
{9∗(η)} (11)

where9∗ is the Legendre–Fenchel transform of9, that is

∀µ ∈M 9∗(µ) := sup
f∈C(�)

{〈µ|f 〉 −9(f )}

or, in an equivalent way

∀f ∈ C(�) 9(f ) := sup
µ∈M
{〈µ|f 〉 −9∗(µ)}.

(Recall that〈µ|f 〉 stands for
∫
f dµ orµ(f ).) One has the following lemma:

Lemma 4.1 (Moment generating function).If µ is ag-measure on�, then the convex map
Pg fromC(�) toRdefined byPg(ψ) = P(φg+ψ) for all ψ ∈ C(�), is the common logarithmic
moment generating function of(T̃n)n and(Tn)n.

Proof. Let us denote by varn(ψ) the variations ofψ , on then-cylinders of�. One has for any
integern > 1, |Snψ(ω)− Snψ(πn · ω)| 6

∑n
k=1 vark(ψ) and thus

exp

(
−

n∑
k=1

vark(ψ)

)
6

∫
exp

(
Snψ(ω)

)
dµ(ω)∫

exp
(
Snψ(πn · ω)

)
dµ(ω)

6 exp

( n∑
k=1

vark(ψ)

)
.

Because varn(ψ) goes to 0, asn goes to infinity, then the Cesaro lemma gives

lim
n→+∞

∣∣∣∣1n log
∫

exp
(
Snψ(ω)

)
dµ(ω)− 1

n
log

∑
a∈�n

exp
(
Snψ(a)

)
µ[a]

∣∣∣∣ = 0. (12)

Moreover, for any integern > 0:∑
a∈�n

exp
(
Snψ(a)

)
µ[a] =

∑
a∈�n

exp
(
Sn(φg +ψ)(a)

) µ[a]

exp Snφg(a)
. (13)

Sinceµ is ag-measure, one can easily deduce from (5) and (3) that

lim
n→+∞

1

n
log

∑
a∈�n

exp
(
Snψ(a)

)
µ[a] = lim

n→+∞
1

n
log

∑
a∈�n

exp Sn(φg +ψ)(a) = P(φg +ψ).

Combining statements (12) and (13), the proof is complete �
Giveng ∈ G, one defines the following convex map:

Hg :M→ R ∪ {+∞} defined by Hg(η) =
{
h(η|Iφg ) if η ∈Mσ

+∞ if η /∈Mσ .
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Lemma 4.2. If g ∈ G, then the convex mapsPg andHg are conjugate by Legendre–Fenchel
transformation.

Proof. SinceHg(η) = +∞ whenη /∈Mσ , then the variational principle gives

sup
η∈M
{η(ψ)−Hg(η)} = sup

η∈Mσ

{η(ψ)−Hg(η)} = sup
η∈Mσ

{η(ψ) + h(η) + η(φg)} = P(φg +ψ).

�

So lemma 4.1 ensures the validity of the upper bound (11) and lemma 4.2 expresses the
relationship between the relative entropy and the logarithmic moment generating function
associated to anyg-function. In the next subsection, we proceed to establish the more delicate
lower bound.

4.2. Lower bound

Introduce the metricd∗ onM by setting

∀µ η ∈M d∗(µ, η) =
∞∑
n=1

1

2n
sup
a∈�n
|µ[a] − η[a]|.

It is easy to check thatd∗ gives the weak∗ topology onM. We now state the large-deviation
lower bound for empirical measures.

Theorem 4.3 (Lower bound).Letµ be ag-measure on� andH an open subset ofM. Then,

lim inf
n→∞

1

n
logµ{ω : Tn(ω) ∈ H } > − inf {Hg(η) | η ∈ H }. (14)

Proof. We first prove the statement for cyclic empirical measures. IfH ∩Mσ = ∅ then
inf {Hg(η) : η ∈ H } = +∞ and (14) is trivial. We now suppose thatH intersectsMσ . Since
ergodic measures are dense in weak∗ topology (see [7]) andHg is lower semi-continuous, let
ν be an ergodic measure such thatH(ν) 6 inf {Hg(η) : η ∈ H } + ε, whereε > 0 is arbitrary.
If one denotes bỹEn(H) := {ω : T̃n(ω) ∈ H } then, using the definition of the cyclic empirical
measure, one can write

µ
(
Ẽn(H)

) = ∑
a∈�n

[a]∩Ẽn(H)6=∅

µ[a] =
∑
a∈�n

[a]∩Ẽn(H) 6=∅

µ[a]

ν[a]
ν[a]

=
∫
χẼn(H)(ω)

µ[πn · ω]

ν[πn · ω]
dν(ω). (15)

For ε > 0, introduce the set

Ẽεn(H) := Ẽn(H) ∩
{
µ[πn · ω]

ν[πn · ω]
> e−n(Hg(ν)+ε)

}
.

Then it follows that∫
χẼn(H)(ω)

µ[πn · ω]

ν[πn · ω]
dν(ω) > ν

(
Ẽεn(H)

)
e−n(Hg(ν)+ε). (16)
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Using successively statements (15) and (16),

lim inf
n→∞

1

n
logµ

(
Ẽn(H)

)
> lim inf

n→∞
1

n
log

∫
χẼn(H)(ω)

µ[πn · ω]

ν[πn · ω]
dν(ω)

> lim inf
n→∞

1

n
log

{
ν
(
Ẽεn(H)

)
e−n(Hg(ν)+ε)

}
> lim inf

n→∞
1

n
logν

(
Ẽεn(H)

)−Hg(ν)− ε.
By part (ii) of theorem 3.2,

lim
n→∞

1

n
log

ν[πn · ω]

µ[πn · ω]
=Hg(ν) ν a.e.

and T̃n(ω) converges (in the weak∗ sense) toν for ν-almost allω by the Birkhoff ergodic
theorem. This gives

lim inf
n→∞

1

n
logν

(
Ẽεn(H)

) = 0 i.e. lim inf
n→∞

1

n
logν

(
Ẽn(H)

)
>Hg(ν) + ε.

Statement (14) holds becauseε is arbitrary.
We consider again the ergodic measureν ∈ H such thatHg(ν) 6 inf {Hg(η) | η ∈ H }+ε

andH being open. There existsρ > 0 such thatB◦(ν, ρ) ⊂ H . A straightforward computation
gives a constantc > 0 such that

∀n > 0 ∀ω ∈ � d∗
(
T̃n(ω), Tn(ω)

)
6 c

n
. (17)

From this we obtain the following sequence of inclusions, forn sufficiently large:

Ẽn
(
B◦(ν, ρ/2)

) ⊂ En(B◦(ν, ρ)) ⊂ En(H)
whereEn(L) := {ω : Tn(ω) ∈ L} for any subsetL ofM. Using the result for cyclic empirical
measures and these inclusions, it follows that

lim inf
n→∞

1

n
logµ

(
En(H)

)
> lim inf

n→∞
1

n
logµ

{
En
(
B◦(ν, ρ)

)}
> lim inf

n→∞
1

n
logµ

{
Ẽn
(
B◦(ν, ρ/2)

)}
> −Hg(ν) > − inf {Hg(η) | η ∈ H } − ε

Sinceε is arbitrary, the proof is complete. �
Let us emphasize that the specification property is crucial to ensure the density of ergodic
measures inMσ (see the introduction).

5. Billingsley dimensions of saturated sets

We define Billingsley dimensions by means of a Carathéodory construction. (Refer to [14]
for a modern account on such a construction.) We mention that Billingsley dimensions are
not defined in [14]. Given an arbitrary non-atomic probability measureµ on�, a Borel set
M ⊂ � and a strictly positive numberε,Rε(M) is by definition the set of all covers ofM with
cylinders ofµ-measure less thanε. Forβ ∈ [0, 1], define

Cβ
ε (M;µ) := inf

R∈Rε(M)

∑
c∈R

µ(c)β.
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Since the mapε 7→ Cβ
ε (M;µ) is monotonic, we set

Cβ(M;µ) := lim
ε→0+

Cβ
ε (M;µ).

It is easy to check that by construction

β < β ′ and Cβ(M;µ) <∞ ⇒ Cβ ′(M;µ) = 0

β < β ′ and Cβ ′(M;µ) > 0 ⇒ Cβ(M;µ) = ∞.
This leads to the following definition.

Definition 5.1 (Billingsley dimensions).Letµ be a non-atomic probability measure on�,M
an arbitrary Borel subset of� andCβ(M;µ) defined above. Then the Billingsley dimension
ofM with respect toµ is

dimµ M := inf {β ∈ [0, 1] : Cβ(M;µ) = 0} = sup{β ∈ [0, 1] : Cβ(M;µ) = ∞}.
If λ denotes the Parry measure (the unique measure of maximal entropy), then dimλ is

nothing but the usual Hausdorff dimension dimH when� is equipped with the usual distance

d(ω, ω′) = k−ν(ω,ω′)

where

ν(ω, ω′) :=
{

max{n ∈ N : πn · ω = πn · ω′} if ω 6= ω′
+∞ if ω = ω′.

(Notice thath(λ) = htop = logk and recall thatk is the cardinal of the alphabet generating
the space�.)

Given two probability measuresµ andη on�, the singularity function ofη with respect
toµ is defined in [5] by setting

∀ω ∈ � η

µ
(ω) := lim inf

n→+∞
logη[πn · ω]

logµ[πn · ω]
(> 0)

with the classical conventions for the undetermined ratios of the form log(x)/ log(y). If µ is
non-atomic, then it is proved in [5] that for every subsetM of �,

dimµ M = inf
η

sup

{
η

µ
(ω) : ω ∈ M

}
where the infimum is taken over all probability measuresη on�. Cajar defines a quasi-metric
q onMσ by setting

q(µ, η) := sup
ω∈�

max

{∣∣∣∣log
µ

η
(ω)

∣∣∣∣, ∣∣∣∣log
η

µ
(ω)

∣∣∣∣}.
This quasi-metric is constructed in such a way that for any Borel subsetM of �, if µ is a
q-limit of the sequence(µn)n of non-atomic probability measures (i.e. limn q(µ,µn) = 0),
then

lim
n→+∞dimµn M = dimµ M. (18)

Note that the topology induced byq is not in general the weak∗ topology (see remark 2.7).
Moreover, this quasi-metric is distinct from thed-distance recently used to evaluate the speed
of convergence of Markov approximations for some sufficiently mixingg-measures [4].

We can state the following lemma:
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Lemma 5.2 (q-limits and g-measures).Anyg-measureµ on� is theq-limit of the sequence
(µn)n of its Markov approximations.

Proof. Pickω ∈ � and letθ : N→ N be a strictly increasing function such that

η

ν
(ω) = lim

n→∞
log η[πθ(n)ω]

log ν[πθ(n)ω]

whereη andν are probability measures. By weak∗ compacity of the setM, one can suppose
that

1

θ(n)

θ(n)−1∑
k=0

δσkω

converges weakly to a probability measureρω. If η and ν are g-measures, respectively,
associated with theg-functionsg andg′, one can deduce from lemma 2.6:

η

ν
(ω) = lim

n→∞
log η[πθ(n)ω]

log ν[πθ(n)ω]
= ρω(I

c
η )

ρω(I cν )
. (19)

Now, if µ is ag-measure, there exists a compact intervalJ ⊂ (0,+∞) which contains both
ρ(I cµ) andρ(I cµn) for any probability measureρ and anyn ∈ N. This is due to the fact that
I cµn uniformly converges toI cµ (by lemma 2.6) and the information function of ag-measure is
strictly positive and continuous. From (19) we deduce that∣∣∣∣log

µ

µn
(ω)

∣∣∣∣ = ∣∣∣∣log
ρω(I

c
µ)

ρω(I cµn)

∣∣∣∣ 6 K|ρω(I cµ − I cµn)| 6 K ‖ I cµ − I cµn ‖∞
whereK is a positive constant given by a classical inequality of calculus. We thus obtain

q(µ,µn) 6 K ‖ I cµ − I cµn ‖∞
which concludes the proof by again applying lemma 2.6 �

For anyω ∈ �, let1(ω) be the set of accumulation points (with respect to the weak∗

topology) of the sequence of empirical measures(Tn(ω))n. 1(ω) is a non-empty compact
connected subset ofMσ (see, for instance, [7]).

Definition 5.3 (Saturated sets).A subsetM of � is said to be saturated if it is saturated in
class for the following equivalence relation:

∀(ω, ω′) ∈ �×� ω ∼ ω′ ⇐⇒ 1(ω) = 1(ω′). (20)

For everyH ⊂Mσ (�), let us denote by∇(H) := {ω : 1(ω) = H }. Note that∇(H) is
either an empty or a saturated set. The so-called smallest saturated sets are of the form∇1(ω)
for someω ∈ �, i.e. the equivalence class ofω. Stated in our notation, Cajar proves that for a
finite step Markov measureµ on�, one has

∀ω ∈ � dimµ ∇1(ω) = inf

{
h(η)

η(I cµ)
: η ∈ 1(ω)

}
. (21)

We now give the natural generalization of(21) in the case ofg-measures.

Theorem 5.4 (Billingsley dimensions of saturated sets).If µ is ag-measure on�, then

∀ω ∈ � dimµ ∇1(ω) = inf

{
h(η)

η(I cµ)
: η ∈ 1(ω)

}
.
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Proof. Letµn be then-step Markov approximation of theg-measureµ. A simple reformulation
of (21) gives for all integersn,

dimµn ∇1(ω) = inf
η∈1(ω)

{γ (η|µn)} (22)

with γ (η|µn) := h(η)/η(I cµ) to ease the notation. By lemma 5.2, theg-measureµ is the
q-limit of the Markov measuresµn. It follows from (18) that

dimµ ∇1(ω) = lim
n→+∞dimµn ∇1(ω) = lim

n→+∞ inf
η∈1(ω)

{γ (η|µn)}. (23)

In addition, there exists a constantK such that for anyη ∈Mσ ,

|γn(η|µ)− γ (η|µn)| = h(η)
∣∣∣∣ 1

η(I cµ)
− 1

η(I cµn)

∣∣∣∣ 6 htop K ‖I cµ − I cµn‖∞
which implies thatγ (·|µn) converges uniformly onMσ to γ (·|µ) by lemma 2.6. Therefore,
the following commutation of symbols arises:

lim
n→+∞ inf

η∈1(ω)
{γ (η|µn)} = inf

η∈1(ω)

{
lim
n→+∞ γ (η|µn)

}
= inf

η∈1(ω)
{γ (η|µ)}

and by comparison with statement (23), the proof is complete. �

6. Some applications and consequences

6.1. The relationship between relative entropy and Billingsley dimensions

For any shift-invariant measureη, let

G(η) := {ω : ∀f ∈ C(�), lim
n→∞(1/n)Snf (ω) = η(f )

}
be the set ofη-generic points. It is clear that for anyω ∈ G(η),1(ω) = {η} and∇{η} = G(η),
which proves thatG(η) is a saturated set. Let us recall that ifη andν are two distinct ergodic
measures, thenν(G(η)) = 0. One hasν(G(ν)) = 1 if and only if ν is ergodic. (See [7] for
details.) It is possible to give the following expression which only makes use of entropy and
relative entropy:

Proposition 6.1 (Billingsley dimensions and relative entropy).Letµ be ag-measure andη
a shift-invariant measure. Then

dimµ G(η) = h(η)

h(η) + h(η|µ). (24)

This makes an explicit link between Billingsley dimensions and relative entropy. Whenµ

coincides with the Parry measureλ on� (which is the unique measure of maximal entropy),
assertion (24) reduces to

h(η|λ) = htop
(
1− dimH G(η)

)
(25)

sinceP(0) = htop.
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6.2. Multifractal spectrum for continuous functions

We now apply the large-deviation results of section 4 to some closedd∗-balls centred on an
ergodic measureη. DefineB(η, ε) := {η′ ∈M | d∗(η, η′) 6 ε}.
Proposition 6.2. Letµ be ag-measure on�. For any ergodic measureη on�

lim
ε→0+

lim
n→∞

1

n
logµ{ω : Tn(ω) ∈ B(η, ε)} = −h(η|µ).

Proof. One has for anyε > 0, sinceB(η, ε)◦ = B(η, ε):

lim
n→∞

1

n
logµ{ω : Tn(ω) ∈ B(η, ε)} = − inf {Hg(η

′) : η′ ∈ B(η, ε)} = −Hg(ηε)

for some elementηε ∈ B(η, ε) (Hg is lower semi-continuous onMσ andB(η, ε) is compact).
Moreover, we have the following inequality:

−Hg(ηε) = lim
n→∞

1

n
logµ{ω : Tn(ω) ∈ B(η, ε)} > −Hg(η).

As the metricd∗ is compatible with the weak∗ topology,ηε tends toη in the weak∗ sense asε
goes to 0. By lower semi-continuity,Hg(η) 6 lim inf

ε→0+
Hg(ηε) and finally

lim
ε→0+

lim
n→∞

1

n
logµ{ω : Tn(ω) ∈ B(η, ε)} = −Hg(η) = −h(η|µ). �

One can deduce large-deviation results for a time average of continuous functions by
applying the so-called contraction principle (see, for instance, [8]). The trick is to note that
for any continuous functionψ and anyω ∈ �,

∫
ψ dTn(ω) = (1/n)Snψ(ω). Thus, defining

the map fromM toR such thatν 7→ ∫
ψ dν which is obviously continuous (with respect to

weak∗ topology), one constructs by pull-back a deviation functionH̃g onR in the following
way:

∀α ∈ R H̃g(α) =
{

inf {h(η|Iφg ) : η(ψ) = α} if α ∈ ]αψ, αψ [

+∞ if α /∈ ]αψ, αψ [.

The next lemma defines the real constantsαψ, αψ . Let P̃g : R→ R, P̃g(β) := P(φg + βψ)
which is a convex function. Then we have the following lemma.

Lemma 6.3 (Interval of the spectrum). Let g be an element ofG, ψ a continuous function
on� andP̃g defined as above. Then

(i)
d+P̃g

dβ
(β) = sup{η(ψ) : η ∈ Iφg+βψ }

d−P̃g
dβ

(β) = inf {η(ψ) : η ∈ Iφg+βψ }

(ii) lim
β→+∞

d+P̃g

dβ
(β) = sup

η∈Mσ

{η(ψ)} =: αψ

lim
β→−∞

d−P̃g
dβ

(β) = inf
η∈Mσ

{η(ψ)} =: αψ.
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Proof. The proof follows easily from the characterization of equilibrium states as tangent
functional to the pressure (that is, we haveµ ∈ Iφ ⇐⇒ ∀ξ ∈ C(�), P (φ+ξ)−P(φ) > µ(φ),
whereφ is a given potential; see [16]). �

It is readily checked thatP̃g and H̃g are conjugate by the Legendre–Fenchel
transformation. One obtains the following easy corollary of proposition 6.2 and lemma 6.3:

Corollary 6.4. Letg be ag-function on�, µ an associatedg-measure andψ a potential on
�. Then, for anyα ∈ ]αψ, αψ [,

lim
ε→0+

lim
n→+∞

1

n
logµ

{
ω :

1

n
Snψ(ω) ∈ [α − ε, α + ε]

}
= H̃g(α).

Now suppose that for a givenβ ∈ R, the simplexIφg+βψ is reduced to a single point
denoted byµβ which is necessarily ergodic. This means that for the underlying thermodynamic
formalism, there are no phase transitions at inverse temperatureβ. By lemma 6.3,µβ(ψ) := αβ
for someαβ ∈ ]αψ, αψ [. For any shift-invariant measureη on� such thatη(ψ) = αβ , it
follows from the variational principle that

h(η) + η(φg + βψ) > h(µβ) +µβ(φg + βψ) i.e. h(µβ |µ) 6 h(η|µ). (26)

By definition ofH̃, this implies thath(µβ |µ) = H̃(αβ) and corollary 6.4 gives

lim
ε→0+

lim
n→+∞

1

n
logµ

{
ω :

1

n
Snψ(ω) ∈ [αβ − ε, αβ + ε]

}
= h(µβ |µ). (27)

Now define, for anyα ∈ ]αψ, αψ [, the level sets

Eα(ψ) :=
{
ω ∈ � : lim

n→+∞
1

n
Snψ(ω) = α

}
. (28)

Our aim is to compute dimH Eα(ψ). We have the following proposition:

Proposition 6.5. Letψ be a Ḧolder continuous function. Then, for anyα ∈ ]αψ, αψ [,

dimH Eα(ψ) = 1 +
1

htop
lim
ε→0+

lim
n→+∞

1

n
logλ

{
ω :

1

n
Snψ(ω) ∈ [α − ε, α + ε]

}
.

Proof. The constant functiong0 = 1/k is trivially ag-function on� and the unique associated
g-measure is the Parry measureλ. Assume thatψ is normalized (which is not a restriction).
The potentialsφg0 + βψ andβψ are cohomologous for allβ ∈ R, so they admit a unique
common equilibrium stateµβ which is a Bowen Gibbs measure. Ifψ is not cohomologous
to 0, thenβ 7→ µβ(ψ) is an analytic strictly increasing map fromR onto ]αψ, αψ [ and thus
there exists an analytic one-to-one mapb from ]αψ, αψ [ ontoR, such thatµb(α)(ψ) = α, for
all α ∈ ]αψ, αψ [. In this case, for any givenα ∈ ]αψ, αψ [, statement (27) becomes

lim
ε→0+

lim
n→+∞

1

n
logλ

{
ω :

1

n
Snψ(ω) ∈ [αβ − ε, αβ + ε]

}
= h(µb(α)|λ) (29)

that is, by using (25),

dimH G(µb(α)) = 1 +
1

htop
lim
ε→0+

lim
n→+∞

1

n
logλ

{
ω :

1

n
Snψ(ω) ∈ [α − ε, α + ε]

}
. (30)

It is clear that

G(µb(α)) ⊂ Eα(µψ) =
⋂
ε>0

⋃
m>0

⋂
n>m

{
ω :

1

n
Snψ(ω) ∈ [α − ε, α + ε]

}
. (31)

A study of such multifractal problems can be found in [12] and it is proved that, in fact,
dimH Eα(ψ) = dimH G(µb(α)). This concludes the proof �
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6.3. Hausdorff dimension of sets of non-generic points

Non-generic points are related to the irregular part of the multifractal spectrum, that is the part
of the spectrum for which level sets are not defined.

For each continuous functionf on�, define the following set:

Ir(f ) :=
{
ω :

Snf (ω)

n
does not converge

}
.

Take the union of such sets over all continuous functions:

I =
⋃

f∈C(�)
I r(f ).

This is an invariant but not compact set which has measure zero for any ergodic measure
(thanks to the Birkhoff ergodic theorem and separability ofC(�)). By definition,

� = G ∪ I with G ∩ I = ∅
whereG is the set of all generic points in�, i.e.

G =
⋃

µ∈Mσ

G(µ) = {ω : ∀f ∈ C(�), (1/n)Snf (ω) converges}.

Now we can state the following proposition:

Proposition 6.6 (Non-generic points have full Hausdorff dimension).LetI the set defined
above. Then

dimH I = 1.

Proof. Let (µn)n be a sequence of non-atomic measures converging weakly toλ and such that
h(µn) converges toh(λ) = htop. Then consider, for anyn > 1, the segment [µn, λ] ⊂Mσ ,
that is the measures of the formsµn + (1− s)λ, s ∈ [0, 1]. This segment is clearly a non-
empty closed connected subset ofMσ , so from [7] we know there exists anω ∈ � such
that1(ω) = [µn, λ] for any n > 1. Moreover, the set of suchω is dense in� and clearly
∇[µn,µ] ⊂ I. Thus

dimH ∇[µn, λ] 6 dimH I for any n > 1.

Now, by theorem 5.4 and since the mapν 7→ h(ν) is affine onMσ , it follows that

dimH ∇[µn, λ] = min(h(µn), htop)

htop
.

By virtue of the variational principle,h(µn) < htop, which implies that

dimH ∇[µn, λ] = h(µn)

htop
.

However, for anyε > 0, there existsN = N(ε) such thath(µn)/htop > 1− ε for anyn > N ,
so we obtain dimH I > 1− ε. Sinceε is arbitrary, the proof is complete. �
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6.4. Final comments

Letψ be Hölder continuous as above. It can be readily checked that

lim
n→∞

logµψ [πn · ω]

logλ[πn · ω]
= α (32)

if and only if lim
n→∞(1/n) logµψ [πn · ω] = α · htop. One can replace logµψ [πn ·ω] by Snψ(ω)

whenψ is normalized. The quantity (32) is the pointwise dimension of the measureµψ .
Thus, multifractal analysis of pointwise dimensions of Gibbs measures and Birkhoff averages
of Hölder continuous functions are the same.

A natural question is to perform the multifractal analysis of pointwise Billingsley
dimensions defined by replacing in the preceding formulaµψ by any ergodic measureη, and
λ by anyg-measure. Theorem 3.2 shows that this quantity is well defined almost everywhere
and formula (24) gives dimµ G(η) for its almost-everywhere value. The problem is to obtain
the Billingsley dimension of level sets of this pointwise dimension and to study irregular points
which are conjectured to be of full dimension.

With the choice of the metricd (see section 5), it is well known thathtop(σ |A) =
dimH A · htop, for anyA. Thus proposition 6.6 readshtop(σ |I) = htop. Moreover, one
obtains immediately from (6.5), up to a multiplicative factor, the topological entropy of the
level setsEα(ψ).
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